GLOBAL LEGAL RESPONSES TO
PRENATAL GENDER IDENTIFICATION
AND SEX SELECTION

Seema Mohapatra, JD, MPH*

INTRODUCTION

Over one hundred million women are estimated to be “missing” from the world’s population due to some form of gendercide.¹ Gendercide exists on almost every continent and affects every class of people.² Gendercide has traditionally taken the form of sex-selective abortion, infanticide, or death caused by neglect.³ Sex-selective abortions occur when a pregnancy is terminated due to the sex of the fetus.⁴ In the last few decades, technological advances have allowed potential parents to identify the gender of their baby early in the first trimester.⁵ Recently, with the advent of newer technology that allows one to choose a baby’s gender, such as preimplantation genetic diagnosis (“PGD”) and MicroSort, it is possible for those who can afford it to select their child’s gender instead of resorting to getting rid of a fetus of an unwanted gender.⁶ Although there are certainly individuals who wish to have daughters over sons,⁷ most cultures have historically preferred having male children. Attitud-

² Gendercide, supra note 1, at 77.

³ See Deckha, supra note 1, at 11 (citing Policy Statement, supra note 1, at 68–69).

⁷ Jasmeet Sidhu’s article, How to Buy a Daughter, centers on the struggles of one woman, Megan Simpson, a nurse whose name was changed for privacy purposes, who was one of four sisters and longed for a baby girl of her own. Jasmeet Sidhu, How to Buy a Daughter, SLATE (Sept. 14, 2012, 3:30 AM), http://mobile.slate.com/articles/health_and_science/medi-
nal surveys, taken periodically since the 1930s in the United States, reveal a sustained and marked preference for male children over female children.\(^8\)

This preference is especially marked in Asian countries, such as China and India.\(^9\) In these countries, there exists a strong son preference.\(^10\) In rural communities in China and India, the need for hard labor historically caused families to prefer to have sons.\(^11\) Also, inheritance rules often allowed only sons to receive land, which also helped contribute to son preference.\(^12\) In India, traditionally, a bride’s family was expected to give the groom’s family money and gifts as dowry.\(^13\) Although dowry is now technically illegal in India, this expensive practice continues, which adds to the financial reality that having a daughter is a burden while having a son is a potential boon.\(^14\)

This strong cultural preference, coupled with the modern desire for a smaller family and the availability of technology that discloses the sex of the fetus early in pregnancy, has resulted in an increase in sex-selective practices.\(^15\) Before the advancement of technologies to identify the sex of a fetus, the imbalance in ratios was attributed to killing or neglect of female infants.\(^16\) However, since the development of medical technology in the early 1980s, the availability of ultrasounds and other diagnostic technologies that can detect the sex of a fetus have accelerated the sex-ratio imbalances at birth in some parts of the world.\(^17\)

8 Deckha, supra note 1, at 11 (citing Policy Statement, supra note 1, at 68–69). This preference includes a desire for first-born sons and for additional sons if there are an unequal number of children in a family. Id.

9 *Gendercide*, supra note 1, at 77.

10 Id.

11 See id.

12 See id.

13 Deckha, supra note 1, at 11 (citing Policy Statement, supra note 1, at 68–69); see also *Gendercide*, supra note 1, at 77.

14 Elisa Scalise, Rural Dev. Inst., Women’s Inheritance Rights to Land and Property in South Asia 16 (2009).

15 *Gendercide*, supra note 1, at 77. This trend resulted in a “malign combination of ancient prejudice and modern preferences for small families.” Id.

17 Id.
Despite the economic growth in India and China, daughter discrimination continues to be a reality. Girls that are carried to term can be subjected to biased feeding practices, inadequate clothing, and lower-quality health care provided to them. In China and India, over 120 males are born for every 100 females. This difference is far greater than the natural probability of having a boy over a girl and is most likely due largely to sex-selective abortion and infanticide. The World Development Report (“WDR”), published annually by the World Bank, estimates that there are almost four million “missing women” annually in the world as a result of sex-selective abortion and high female mortality rates alone. According to WDR, 1.43 million girls are eliminated due to gendercide. In the parts of the world where there exists a strong son preference, these statistics suggest that prenatal gender identification technology is being used mainly to restrict female births and promote male births.

This Article examines the issue of gender selection technology. If the technology is available to choose a child’s gender, is there any reason to restrict access to such technology? Does the answer depend upon how the technology is being used? Many countries have attempted to curb this issue through legislation restricting sex-selective abortions, and some have even gone further to restrict access to ultrasound and other gender identification technology. This Article provides a global overview of such restrictions and examines their bioethical implications.

Part I of this Article discusses the practice of sex selection and its impact worldwide. This part examines the impact of sex-selective practices on birth rates in various countries, including the United States. Then, Part II outlines the technological methods available to identify or even choose a child’s gender and what this means for the practice of sex selection. Part III discusses legal efforts to restrict sex selection in India, the United States, and other countries around the world. Part IV analyzes these legal efforts through a bioethical lens, specifically considering autonomy, justice, and class issues. Although the practice of sex-selective abortion or sex selection is certainly disturbing, this Article concludes that restricting access to the technology that allows sex selection is not an effective answer.

19 WORLD HEALTH ORG., supra note 16, at 5.

20 Gendercide, supra note 1, at 77.

21 Id. As a result, China may have as many unmarried young males as there are total males in the United States. Id.

23 J.P., Gender Inequality, supra note 18. The number of missing females continues to rise in China, India, Europe, the Middle East, and other parts of Asia. Id.

24 See, e.g., Lemoine & Tanagho, supra note 22, at 203 n.1; see also KATE GILLES & CHARLOTTE FELDMAN-JACOBS, POPULATION REFERENCE BUREAU, WHEN TECHNOLOGY AND TRADITION COLLIDE: FROM GENDER BIAS TO SEX SELECTION 4 (2012).
I. SEX SELECTION AND ITS PREVALENCE WORLDWIDE

Sex-selective abortion, which is also sometimes known as feticide or gendercide, is the practice of terminating a pregnancy based on the predicted sex of the baby.25 As mentioned above, the selective abortion of females is more common in countries, like China and India, whose culture values male children over females.26 While sex-selective abortion statistics are not well tracked, the male-to-female ratios in many countries suggest sex-selective practices.27 When examining whether sex-selective practices are being used in a population, the sex ratios within a population are instructive. The normal male-to-female sex ratio should fall within a narrow scope of 104 to 107 boys to every 100 girls.28 When these ratios are skewed within a population, this often suggests the use of sex-selective abortions or other sex-selective practices.29

A. China

Traditionally, Chinese families have favored sons as a form of social security to take care of elderly parents and to carry on the family name.30 In the 1960s and 1970s, China had an average of 106 boys for every 100 girls.31 By the 1990s, that ratio had changed to 115 boys for every 100 girls.32 In 2000, five provinces in China had an average ratio of more than 125 boys to 100 girls.33 In some provinces, the ratio was actually 136 boys to every 100 girls born.34

China instituted a maximum one-child policy to restrain population growth in 1979.35 The policy included several restraints involving the government in every aspect of family planning from conception to delivery.36 Restraints included a requirement that couples must be married to obtain a “birth permit,” a mandatory use of intrauterine devices to prevent further pregnancy, compulsory pregnancy tests administered by the government, and forced abortions if a woman becomes pregnant a second time.37 Although this policy was implemented in 1979, it was not officially codified until 2001 as the Law on Population and Family Planning.38

25 Chamie, supra note 4; see also Gendercide, supra note 1, at 77.
26 Lemoine & Tanagho, supra note 22, at 214–15.
27 Id.
28 Chamie, supra note 4.
29 Id.
30 Id.
31 Id.
32 Id.
33 Id.
34 Id.
35 Raina Nortick, Singled Out: A Proposal to Extend Asylum to the Unmarried Partners of Chinese Nationals Fleeing the One-Child Policy, 75 Fordham L. Rev. 2153, 2156–57 (2007). Ironically, the history of China’s one-child policy began in 1949 when China wanted to urge couples to have several children. Id. at 2156. This policy was sparked by the establishment of the People’s Republic of China and the idea that people made the nation great. See id. However, the policy worked a little too well and between 1949 and 1979, China’s population grew from 549 million to over 800 million—a number threatening to cripple China’s economy. Id.
36 Id. at 2157.
37 Id.
of the People’s Republic of China on Population and Family Planning. 38 It has been highly effective in controlling the population thus far. 39 However, it has led to a very skewed male population because of the son preference in China.

B. India

India has received much negative international media attention regarding sex-selective abortion and gendercide. Although discrimination against female children has existed in India for centuries, female infanticide (the killing of a female child in its early years) was first documented in the early eighteenth century. 40 As medical technology has improved, infanticide has been replaced largely by feticide and sex-selective abortion. 41 After ultrasound machines became available in India, sex-selective abortions became much more common. 42 In one study in the city of Pune, India, 430 of the 450 women who were told that they were having a daughter chose to have an abortion, while all 250 women who were told that they were carrying a boy chose to continue their pregnancies. 43 Another study showed that in Mumbai, India, in 1986, of 8000 abortions that were preceded by amniocentesis, 7999 of the aborted fetuses were female. 44

Just as in China, India’s sex ratios indicate that sex-selective abortions are taking place. 45 In 2004, the sex ratio of Delhi was 818 girls to 1000 boys; although this does not directly reflect sex-selective abortion statistics, the skew in numbers can most likely be attributed to the practice. 46 The national male-to-female ratio has gone from 102 males to 100 females in the 1950s to 108 males to 100 females in 2008. 47 In certain urban areas, the ratio is 111 males to every 100 females. 48 In the state of Punjab, the sex ratio is 126 boys to 100 girls. 49 In Haryana, the ratio is 122 boys to 100 girls. 50

In India, the gender ratios seem to differ with religion. Within the Sikh population in India, the ratio is 127 boys to 100 girls, while among the Chris-
tian population, the ratios are much more even, as low as 104 boys to 100 girls.51 These average ratios skew even more dramatically when discussing a second or third child.52 If the firstborn child is a girl, the male to female ratio increases to 132 boys to 100 girls.53 If the first child and second child born were both female, the sex ratio for the third child increases even more to 139 boys to 100 girls.54

Due to the skewed sex ratios, there is a shortage of eligible women for men to marry in certain areas of India and China.55 By 2020, there will be an estimated surplus of about thirty-five million males in China and twenty-five million males in India.56 The disproportion of male representation that results from sex selection also impacts partnership or marriage by women and men.57

C. United States

The number of sex-selective abortions that occur in the United States is difficult to determine, as women are not required to disclose the reasons for choosing abortion.58 However, some statistics suggest there may be evidence of sex selection in the Asian American population.59 Although the sex ratios of the oldest child in U.S.-born children of Chinese, Korean, and Asian Indian parents do not suggest sex selection, the ratio for subsequent children do suggest that gender-selection practices may be at play.60 In these populations, if there was no previous son, the second or third child was more often male than should be if sex selection was naturally occurring.61 If the first child was a girl, the sex ratio for the second child was 1.17 favoring males.62 If the first two children were girls, the ratio for the third was 1.51 favoring males.63 In contrast, the sex ratios for white Americans in the United States in the same period were within the range of biologically normal and varied only slightly with parity and sex of previous children.64 What is significant about these statistics is

51 Id.
52 Id.
53 Id.
54 Id.
55 Id. Some have expressed concerns that men in these communities may resort to extreme measures—such as marrying child brides, importing “mail-order” brides from other regions, or turn to crime, human trafficking, and bride kidnapping to find a mate. Id.
56 Id.
57 WORLD HEALTH ORG., supra note 16, at 5. Because there is a lack of women to marry, they may be trafficked in from other countries or in some instances shared among men. Id.
60 Id.
61 Id.
62 Id.
63 Id. These results held true irrespective of the mother’s citizenship status, which was looked at as a possible marker of cultural assimilation. Id.
64 Id.
that these son-biased sex ratios are comparable to those documented for second and third children in India, China, and South Korea.\footnote{Id.}

\section*{II. Gender Identification Technology}

Part II of this Article summarizes the different types of gender identification technology that are currently utilized. The once cutting-edge, and now commonplace, prenatal diagnostic tools of ultrasound, amniocentesis, and chorionic villus sampling all identify a fetus’s gender in the first or second trimester of pregnancy. Noninvasive Prenatal Diagnosis, a new maternal blood test, also allows identification of gender but much earlier in one’s pregnancy. The newer technologies of MicroSort and Preimplantation Genetic Diagnosis actually allow choosing the gender of one’s child. This section provides a description of each of these gender identification and selection methods.

\subsection*{A. Ultrasound}

Ultrasound is a noninvasive procedure with a reputation for safety.\footnote{See 105 Am. Jur. 3d Proof of Facts 3d § 3 (2012).} Results are available almost immediately and ultrasounds are considered safe for both the mother and baby.\footnote{Mayo Clinic Staff, Fetal Ultrasound, \textit{MAYO CLINIC} (Oct. 6, 2012), http://www.mayoclinic.com/health/fetal-ultrasound/MY00777 [hereinafter Mayo, Fetal Ultrasound].} An ultrasound can be used to detect fetal anomalies and assess fetal growth.\footnote{Id.} An ultrasound “uses high-frequency sound waves to produce images of a baby in the uterus.”\footnote{Id.} A small plastic device, a transducer, is used to send out sound waves and then measure the returning waves as they bounce off bone and tissue in the body.\footnote{Osagie K. Obasogie, \textit{Designing Your Own Baby}, BOS. GLOBE, Aug. 8, 2005, at A11, available at http://www.boston.com/news/globe/editorial_opinion/oped/articles/2005/08/08/designing_your_own_baby/.} An ultrasound cannot accurately determine a fetus’s sex until four to five months into a pregnancy.\footnote{Mayo, Fetal Ultrasound, supra note 66.} An ultrasound generally allows the health care provider to view the fetus’s appendages and determine gender during the second trimester—between eighteen and twenty weeks of gestation.\footnote{Id.}

\subsection*{B. Amniocentesis}

Amniocentesis is one of the most common methods of prenatal screening.\footnote{105 Am. Jur. 3d Proof of Facts 3d § 3 (citing Judith A. Boss, \textit{The Birth Lottery} 18, 45 (1993); Steven E. Pegalis, \textit{American Law of Medical Malpractice} 3d § 13:8 (2012)).} The procedure is performed around sixteen weeks of gestation.\footnote{Id.} A long spinal needle is inserted through the abdomen and the wall of the uterus into the amniotic sac surrounding the fetus.\footnote{Id.} A sample of the amniotic fluid is with-
The amniotic fluid contains cytological and biochemical components from the fetus. The cells’ chromosomes are examined, allowing for determination of the fetus’s sex and may be used for detecting fetal abnormalities, such as Down Syndrome. Amniocentesis is 99.5% accurate in diagnosing defects when used with ultrasound. However, it is not used in all cases because of the potential risks—including trauma caused by insertion of the needle to the fetus, trauma to the umbilical cord or maternal structures, infection, and premature labor or abortion. It is commonly used when the mother is over thirty-five years, which presents a greater risk of Down Syndrome and other problems, as well as when family history indicates a risk of chromosomal abnormality. Amniocentesis is generally done to test for various chromosomal abnormalities but can also be used to determine the sex of the fetus.

C. Chorionic Villus Sampling

Chorionic villus sampling (CVS) can also be done to provide information on a baby’s genetic makeup, including gender. CVS requires the removal of a sampling of the chorionic villi (wispy projections) “that make up most of the placenta and share the baby’s genetic makeup.” CVS is usually only performed if there are abnormal results from other prenatal screening tests or if there are certain risk factors (chromosomal abnormality in previous pregnancy, family history of genetic disorder, or mother over the age of thirty-five) that may need earlier diagnosis. It can be done even earlier than amniocentesis and is generally performed around ten to twelve weeks gestation. A needle is inserted either through the abdomen or vaginally, and a sample of cells is removed from around the embryo. The cells can be tested for genetic diseases or chromosomal abnormalities.

76 Id.
79 Turnbull & Mackenzie, supra note 77, at 315.
81 105 AM. JUR.3D Proof of Facts § 3 (citing Michelle McEntire, Comment, Compensating Post-Conception Prenatal Medical Malpractice While Respecting Life: A Recommendation to North Carolina Legislators, 29 CAMPBELL L. Rev. 761 (2007)).
82 Id. (citing Rush v. Blanchard, 426 S.E.2d 802 (S.C. 1993)).
83 Id. (citing Buzniak v. Cnty. of Westchester, 156 A.D.2d 631 (N.Y. App. Div. 1989)).
84 Id.
86 Id. (citing Davis, 887 So. 2d 722).
88 Id.
89 Id.
90 105 AM. JUR.3D Proof of Facts § 3 (citing Davis, supra note 66, at § 3).
91 Id.
92 Id.
form all of the same tests as amniocentesis, there are advantages to CVS over amniocentesis.93 CVS can be performed before amniotic fluid forms, which can allow decisions about abortions to be made sooner.94 However, the procedure does carry a higher risk of miscarriage than amniocentesis.95

D. Noninvasive Prenatal Diagnosis

Noninvasive Prenatal Diagnosis (NIPD), specifically through fetal cell isolation, is a new approach to prenatal diagnosis.96 During the early weeks of pregnancy, a tiny number of blood cells from the fetus leak through the placenta and into the mother’s blood stream.97 These fetal cells can be differentiated from the mother’s cells in a laboratory to allow for genetic analysis.98 Unlike amniocentesis and CVS, this procedure is minimally invasive, requiring only a simple blood test from the mother, practically eliminating all risk factors associated with the more invasive tests.99

The procedure offers the additional advantage that it can be conducted early on in pregnancy.100 As early as eight weeks into the pregnancy, there are a sufficient number of cells in the mother’s blood stream to perform the genetic analysis.101 This early detection of genetic disorders gives parents additional time to make difficult decisions and preparations regarding the pregnancy. Some companies already offer testing directly to consumers over the internet, promising accuracy as high as 95%–99% at as early as five to seven weeks gestation.102 NIPD can identify a fetus’s gender earlier than any other method of prenatal gender identification.

E. Preimplantation Genetic Diagnosis

Preimplantation Genetic Diagnosis (“PGD”) is “a process designed to investigate the genetic characteristics of a preembryo prior to its transfer into the uterus.”103 It is often used as a last resort after a mother has experienced

93 Id.
94 Id.
95 Id. (citing GALE ENCYCLOPEDIA OF MEDICINE (Donna Olendorf et al. eds., 2d ed. 2002); 1 ATTORNEY’S MEDICAL ADVISOR § 14:133 (2013)).
96 Jeffrey R. Botkin, Prenatal Diagnosis and the Selection of Children, 30 FLA. ST. U. L. REV. 265, 280 (2003).
97 Id. (citing Diana W. Bianchi, Fetal Cells in the Mother: From Genetic Diagnosis to Diseases Associated with Fetal Cell Microchimerism, 92 EUR. J. OBSTETRICS, GYNECOLOGY & REPROD. BIOLOGY 103, 105 (2000)).
98 Id.
99 Id.
100 Id.
101 Id.
103 Louis Paonessa, Note, Straightening Your Heir: On the Constitutionality of Regulating the Use of Preimplantation Technologies to Select Preembryos or Modify the Genetic Profile Thereof Based on Expected Sexual Orientation, 33 RUTGERS COMPUTER & TECH. L.J. 331, 335 (2007) (citing Søren Holm, Ethical Issues in Pre-implantation Diagnosis, in The
several miscarriages or death of a fetus or baby due to a genetic disorder.104 PGD can be used to determine whether a mother is at risk for having a baby with certain genetic defects, can be used as a preventative screening measure to find any genetic disorders with in vitro fertilization embryos, and also can be used for selecting the sex of implanted embryos.105 PGD is very reliable for gender selection (gender can be predicted with an 85\%--95\% accuracy106), and 28\% of Americans approve of its use for gender selection.107 When PGD is used in the United States for gender selection purposes, it is often used where a couple has two children of the same sex and wants a third (or later) child of the opposite sex.108 However, once the procedure is more readily available, families may start considering PGD gender selection for a first child.109

The PGD procedure itself involves removing multiple ova from the mother, directly fertilizing them with sperm, and incubating them until they become pre-embryos.110 When the pre-embryos are approximately three days old and contain eight cells, one of those cells is removed for biopsy to determine if the embryo will develop any genetic disorders.111 Based on the biopsy results, patients may consider the genetic profiles of the pre-embryos and decide which ones they would like to have implanted.112 The procedure can cost $18,000 per cycle and screens for over one hundred conditions and almost every known genetic chromosomal defect.113

\section*{F. MicroSort}

MicroSort is a newer technology specifically targeted for the purpose of having a baby of a certain gender.114 MicroSort is used before conception to
separate sperm into those samples containing only the X chromosome (to produce a girl) or only the Y chromosome (to produce a boy).\footnote{115} Couples can then use a sample that contains spermatozoa to produce a healthy baby of the desired gender through a variety of artificial reproduction techniques, such as intruterine insemination, in vitro fertilization, intracytoplasmic sperm injection, or PGD.\footnote{116} The estimated results show that 91%–92% of couples that requested a sort for a baby girl were successful, and 76%–81% of those sorting for boys were successful.\footnote{117} Of the 500 pregnancies achieved using MicroSort technology, only four have been terminated.\footnote{118} Most couples must make more than one attempt to get pregnant, with each attempt costing at least $2500.\footnote{119} It is estimated that boys are preferred 55%–65% of the time when PGD is used, whereas most couples who use MicroSort want girls because the technique is 91% effective in selecting for X sperm.\footnote{120} The majority of couples who use MicroSort for gender selection rather than genetic disorder prevention have no fertility problems.\footnote{121}

MicroSort clinics offer the technology to couples for family balancing (balancing the sexual gender in their families)\footnote{122} or to avoid passing on sex-linked genetic diseases.\footnote{123} It is a less costly and less intrusive alternative to stock sperm. Monica Sharma, Note, Twenty-First Century Pink or Blue: How Sex Selection Technology Facilitates Gendercide and What We Can Do About It, 46 FAM. CT. REV. 198, 208 n.24 (2008). In 1989, an animal physiologist was trying to improve the reproductive efficiency in livestock—working with pigs, rabbits and cattle—and found that sperm could be separated by staining them with a fluorescent dye. \textit{Id.} The sperm carrying the X chromosomes absorbed more dye and therefore glowed more brightly. \textit{Id.} The same phenomenon as was observed in livestock sperm can be observed in human sperm and became the basis for the MicroSort process. \textit{Id.} MicroSort uses a flow cytometer to identify and sort sperm into those carrying the X (female) and the Y (male) chromosome. \textit{Id.} The technology mixes sperm with a DNA-specific dye that helps to separate the X and Y chromosomes. Kalb, \textit{supra}, at 47. The sorted sample is then combined with varying other techniques—intruterine insemination (IUI), in vitro fertilization (IVF), intracytoplasmic sperm injection (ICSI)—to achieve the desired pregnancy. Sharma, \textit{supra}, at 200.

\footnote{115} Sharma, \textit{supra} note 114, at 200, 208 n.24. MicroSort Laboratories are a branch of Genetics & IVF Institute, and are the only laboratories to have the technology to perform this sperm sorting procedure. Sharma, \textit{supra}, at 200.

\footnote{117} See Kalb, \textit{supra} note 114, at 47; Sharma, \textit{supra} note 114, at 200.

\footnote{118} Kalb, \textit{supra} note 114, at 50.

\footnote{119} \textit{Id.} at 47.

\footnote{120} \textit{Id.} at 47, 50.

\footnote{121} \textit{Id.} at 47. Although the trial was not yet complete, MicroSort also reported that “2.4 percent of its babies have been born with major malformations, like Down syndrome, compared with 3 to 4 percent in the general population.” \textit{Id.} at 51.

\footnote{122} \textit{Id.} at 47.

According to their website, “MicroSort is available for couples who are looking to balance their families or prevent a genetic disease.” Based on these requirements, it would seem that a family cannot simply choose to have a baby and select its gender, but must be selecting the “underrepresented gender” and only for a subsequent child.

MicroSort was part of an ongoing Food and Drug Administration (“FDA”) clinical trial, that started in the early 1990s, to “investigate the safety and efficacy of the preconception gender selection process.” Though the safety and efficacy framework the FDA uses in evaluating new drugs is the most demanding in the world, it does not take into account the ethical debate occurring regarding new biotechnologies. As of 2004, the clinical trial of MicroSort technology was halfway to completion at the Genetics and IVF Institute (GIVF) in Fairfax, Virginia. The clinic recruited hundreds of couples through radio, newspaper, and magazine ads—“Do you want to choose the gender of your next baby?”—and “more than 400 babies out of 750 needed for the trial have been born.” MicroSort’s clinical trial for family balancing began in 1995, and more than 1,300 couples had signed on by 2004. This was almost ten times more than the number of couples that joined GIVF’s companion trial “aimed at avoiding genetic illnesses that strike boys.” GIVF hoped that MicroSort would become the first sperm-sorting device to get FDA approval for safety and effectiveness, and hoped to make it available to as many couples as possible.

In April 2011, the FDA informed GIVF that it would no longer be allowed to enroll any more families in the FDA clinical trial for family-balancing purposes. While it remains unclear as to why the FDA chose to shut down this portion of the clinical trials, GIVF released an informational flyer to its trial participants stating that GIVF no longer wished to pursue FDA approval of MicroSort, a decision it claimed had nothing to do with the safety or effectiveness...
ness of MicroSort technology. Because the FDA is no longer allowing GIVF to offer MicroSort for sex-selection or family-balancing purposes, the only way families in the United States can select the gender of their children is through a combination of IVF and PGD. PGD is an alternative to sperm-sorting techniques (the process used by MicroSort) and is seen as more controversial than some of the other assisted reproductive technologies available. It involves screening already fertilized embryos in order to determine the genetic make-up of that embryo, including genetic disorders and sex, and then implanting the favored embryos into the woman’s body. Choosing an embryo to implant can be a difficult decision for patients, as it often requires discarding embryos of the “wrong” sex, something that carries with it heavy moral and ethical concerns.

While its sex-selection procedures are no longer available in the United States, “[t]he MicroSort technique appears to be a commercial success in Asia, especially in China where parents must comply with the one child policy.” Some couples in India who are undergoing IVF cycles are preparing to use the process to “maximize their chances of having [a boy].”

III. GLOBAL RESPONSES AND LIMITATIONS TO GENDER IDENTIFICATION TECHNOLOGY

As described in Part II, there are numerous methods to identify and even choose a baby’s gender today. Although identification of gender is not a problem in itself, many ethical issues arise when such identification leads to gendercide. Many countries have decided to restrict certain types of sex selection. Many of the governments in countries affected by birth ratio imbalances have taken on a number of actions to address the problems stemming from boy preferences. Many countries have attempted to create “legal measures to restrict the use of relevant technologies.” Some laws prohibit determination and disclosure of the sex of the fetus unless the disclosure is required for medical reasons. Other restrictions include the prohibition of abortion for sex-

134 Id.
135 Id.
137 Bumgarner, supra note 136, at 1294.
140 Id.
141 Id.
142 WORLD HEALTH ORG., supra note 16, at 6.
143 Id.
144 Id.
selection purposes and any advertising relating to prenatal sex determination.145

Thirty-six countries have national laws or policies on sex selection.146 In Austria, New Zealand, South Korea, Switzerland, and Vietnam, sex selection is prohibited for any reason.147 The other countries that regulate sex selection prohibit sex-selective procedures for social or “non-medical” reasons, but allow sex selection for medical reasons, such as to avoid the birth of children with sex-linked diseases.148 This section discusses the legal restrictions regarding sex selection in several of these countries, including India, China, and the United States.

A. India

Due to the heavily male-skewed sex ratio, many feminists and activists in

145 Id.
148 IVF—Sex Selection, supra note 147. See also Aghajanova & Valdes, supra note 146, at 106 (“Sex selection is used to avoid so-called sex-linked diseases, which male children inherit from their mothers, such as hemophilia A and B, Duchenne muscular dystrophy, Lesch-Nyhan syndrome and others.”).
India lobbied for legislation to prevent sex-selective abortion.\(^{149}\) The ban on prenatal diagnostic techniques for sex selection first came about in local areas through the efforts of health and human rights activists.\(^{150}\) The Indian Pre-Natal Diagnostic Techniques (Regulation and Prevention of Misuse) Act ("PNDT") came about in 1994, partly as a result of similar efforts at a national level,\(^{151}\) and a parliament subcommittee taking recommendations from women’s and civil rights groups.\(^{152}\) The PNDT Act in India bans sex selection for all purposes.\(^{153}\) This law has not been effective. Often, a physician may merely just “wink or wince” to reveal the gender of the fetus if the physician is aware that the parents really would prefer a boy.\(^{154}\) Although implemented in 1996, the Act was routinely ignored and sex selection continued as a regular practice.\(^{155}\) In response to advocacy groups and a Public Interest Litigation ("PIL") petition, the Supreme Court of India issued opinions in 2001 and 2003 denouncing the practice of sex-selective abortion and calling for more vigorous implementation of the Act.\(^{156}\) In response to these opinions, the PNDT Act was amended, changing the name to the Pre-conception and Pre-natal Diagnostic Techniques (Prohibition of Sex Selection) and imposing limitations on the use of prenatal diagnostic procedures to situations where they are medically necessary.\(^{157}\) This means that women in India are not legally able to find out the gender of their child prior to birth. Although ultrasounds are used for medical purposes,\(^{158}\) they are hidden from view of the pregnant woman and her family. The intention behind the law was to prevent sex-selective abortion.

Despite the amendments to the Act, there remain challenges with enforcement due to complicity from both the medical community and government officials.\(^{159}\) Even when arrests are made, the backlog of cases in the judiciary often

\(^{149}\) See Chamie, supra note 4.

\(^{151}\) See id.

\(^{152}\) Lemoine & Tanagho, supra note 22, at 226 n.173 (citing The Lawyer’s Collective: Women’s Rights Initiative, Pre-conception & Pre-natal Diagnostic Techniques Act: A Users Guide to the Law 1–2 (Indira Jaisingh ed., 2004)).

\(^{155}\) Lemoine & Tanagho, supra note 22, at 206 (citing Prabhat Jha et al., Low Male-to-Female Sex Ratio of Children Born in India: National Survey of 1.1 Million Households, 367 Lancet, Jan. 21, 2006, at 211).

\(^{157}\) Id. at 921–22.

\(^{158}\) See id. at 922.

\(^{159}\) Id.
means that cases stagnate for years. Further, under the Act, a woman who undergoes a sex-selective abortion is penalized. Thus, a woman may be penalized by her family if she does not have the abortion (due to the cultural preference for sons) but will be penalized by the law if she does.

B. China

Similar to India’s law, China’s 1994 Maternal and Infant Health Care Law “prohibit[s] the use of medical technologies such as ultrasound and amniocentesis to identify the gender of the fetus.” The law states that “[s]ex identification of the fetus by technical means shall be strictly forbidden, except [when] it is positively necessitated on medical grounds.” This law was later supplemented by the Regulation On Prohibiting Fetal Sex Identification and Selective Termination of Pregnancy for Non-Medical Reasons in 1998 and the Population and Family Planning Law in 2002. The regulation was passed with “the aim to ensure the normal gender structure of population at birth as well as promote the sustainable development of population, economy and society.” It bans determination of fetal sex and “selective termination of pregnancy, except for medical reasons,” such as if someone who has been diagnosed with a sex-related hereditary disease. China’s Article 35 of the Population and Family Planning Law also bans sex-selective pregnancy termination for non-medical purposes. The law states that “[u]se of ultrasoundography or other techniques to identify fetal sex for non-medical purposes is strictly prohibited. Sex-selective pregnancy termination for non-medical purposes is strictly prohibited.” The punishment for violation includes adminis-

160 Id. at 923.
161 Id.
162 Id. at 923–24.
165 Loveland, supra note 163, at 182–83 (citing Law of the PRC on Population and Family Planning art. 35 (2001)).
166 Id. at 183 (citing Law of the PRC on Population and Family Planning art. 35 (2001)).
168 Id. at art. 3.
169 Id.
170 Loveland, supra note 163, at 183 (citing Law of the PRC on Population and Family Planning art. 35 (2001)).
171 Id. at 183 n.56 (quoting Law of the PRC on Population and Family Planning art. 35 (2001)) (internal quotation marks omitted).
ative sanctions, fines, and possible loss of a provider’s medical license.\footnote{172} Criminal liability only attaches if there is bribery involved.\footnote{173}

These attempts to regulate sex-selective abortion in China have been largely ineffective.\footnote{174} These regulations are laxly enforced.\footnote{175} Amniocentesis and ultrasound technology is widely available in China.\footnote{176} And there is no legal barrier to abortion.\footnote{177} In fact, the abortion may be potentially subsidized by the Chinese government.\footnote{178} Additionally, both the women seeking abortion and those providing them have similar motivation to keep the procedure a secret.\footnote{179}

Another stumbling block has been China’s culture.\footnote{180} Family planning guidelines are generally considered to be “policy” and not “law,” and thus compliance is deemed voluntary.\footnote{181} Although the laws enacted regarding sex selection ban certain practices, the failure to criminalize the practices has rendered them less effective.\footnote{182}

\section*{C. European Countries}

The United Kingdom prohibits sex selection unless there are medical reasons, such as legitimate concerns over passing sex-linked genetic diseases.\footnote{183} The law was originally passed in 1993.\footnote{184} In 2007, it was amended to prevent all sperm-sorting techniques, such as MicroSort.\footnote{185} Similarly, Germany prohibits sex selection. Germany’s Embryo Protection Act of 1990 makes sex selection for non-medical purposes punishable by up to one year’s imprisonment.\footnote{186}

In contrast to some other European countries, Italy allows first trimester abortions for women over the age of eighteen as long as the abortion falls within one of the enumerated categories, including physical or mental danger to

\footnotesize{\begin{itemize}
 \item[172] Regulation on Prohibiting Fetal Sex Identification, supra note 167, art. 9.
 \item[173] Id. at art. 10.
 \item[174] Loveland, supra note 163, at 183 (citing Avraham Y. Ebenstein & Ethan J. Sharygin, The Consequences of the “Missing Girls” of China, 23 \textit{World Bank Econ. Rev.} 399, 418–21 (2009)).
 \item[175] Id. (citing Valerie M. Hudson, \textit{The Missing Girls of China and India: What is Being Done?}, 41 \textit{Cumb. L. Rev.} 67, 69–70 (2011)).
 \item[176] Id.
 \item[177] Id.
 \item[178] Id.
 \item[180] Loveland, supra note 163, at 184.
 \item[181] Id. (citing Susan M. Rigdon, \textit{Abortion Law and Practice in China: An Overview with Comparisons to the United States}, 42 \textit{Soc. Sci. Med.} 543, 544 (1996)).
 \item[182] Id.
 \item[184] Id.
 \item[185] Id.
 \item[186] Birdsall, supra note 124, at 225 (citing \textit{GESETZ ZUM SCHUTZ VON EMBRYONEN [ESchG] [Embryo Protection Act]}, Dec. 13, 1990, BGBL. I at 2786 (Ger.)).
\end{itemize}}
the mother and individual circumstances.187 Other legally justified reasons for an abortion include “economic or social circumstances, the ‘circumstances in which conception occurred,’ and the likelihood that there would be birth defects.”188 Individual circumstances and social circumstances are open enough to allow sex-selective abortions.189 Some theorize that Italy may serve as a destination for abortions in Europe.190 Abortion is provided free of charge191 “in public hospitals or in private structures authorized by the regional health authorities.”192

Italy does have strict laws restricting many aspects of assisted reproduction, including in vitro fertilization and embryonic stem cell research.193 The Medically Assisted Reproduction Law (MARL) allows only infertile, stable, heterosexual couples to become eligible for assisted reproduction techniques and does not allow donor eggs or sperm to be used.194 In addition to limiting the number of embryos that can be created195 and prohibiting freezing of embryos, the law also prohibits genetic analysis on embryos, including PGD, before implantation.196

\begin{flushleft}
188 \textit{Id.} at 8 n.31.
190 \textit{Id.}
191 DiMarco, \textit{supra} note 187, at 8 (citing Clyde Haberman, \textit{Abortion Law in Italy Draws Growing Fire}, \textit{N.Y. Times}, Feb. 19, 1989, at § 1).
192 Patrizia Farina & Livia Ortensi, \textit{Induced Abortion, Contraception and Unmet Need for Family Planning Among African Immigrants in Italy} (2011), available at http://uaps2011.princeton.edu/papers/110726. Abortion is permitted in the second trimester of the pregnancy only where there is a risk to the woman’s life or in cases where the fetus carries genetic or other serious malformations. There are also provisions applicable to women under the age of eighteen who want to obtain an abortion. \textit{Id.}
193 DiMarco, \textit{supra} note 187, at 16.
195 \textit{Id.} at 16 (quoting Alessandra Rizzo, \textit{Official: Italy Abortion Law Could Change}, \textit{Associated Press}, June 14, 2005).
196 \textit{Id.} (citing Robin Marantz Henig, \textit{On High-Tech Reproduction, Italy Will Practice Abstinence}, \textit{N.Y. Times}, Mar. 2, 2004, at F5). Some say that MARL is “unjust given that it is legal under Italian law to screen a fetus during pregnancy and abort it before it is 24 weeks old.” \textit{Id.} at 17 n.79 (quoting Dominic Standish, \textit{Italy: Fertile Ground for Reform}, \textit{Conscience}, May 22, 2005) (internal quotation marks omitted). There are also concerns that MARL “conflicts with the abortion law by giving embryos rights that are not afforded to fetuses.” \textit{Id.}
D. Australia

Sex selection is prohibited in Australia. The National Health and Medical Research Council ("NHMRC") outlawed sex selection on moral and ethical grounds in 2004. The Guidelines that were established by the Council state:

Sex selection is an ethically controversial issue. The Australian Health Ethics Committee believes that admission to life should not be conditional upon a child being a particular sex. Therefore, pending further community discussion, sex selection (by whatever means) must not be undertaken except to reduce the risk of transmission of a serious genetic condition.

Although these guidelines are not legally binding, these guidelines must be followed by any facility or physician’s office seeking accreditation. Three states in Australia—Victoria, Western Australia, and South Australia—have all legislatively banned sex selection unless necessary to prevent “a genetic abnormality or disease,” “a gender based disorder,” or “the transmission of a genetic defect.” For example, under Victoria’s Assisted Reproductive Treatment Act of 2008, an individual may face up to two years imprisonment for utilizing sex selection for non-medical reasons.

E. Canada

In Canada, sex selection is prohibited when using assisted reproductive technology unless used to prevent diseases. According to Canada’s Assisted Human Reproduction Act, no person shall:

[for the purpose of creating a human being, perform any procedure or provide, prescribe or administer any thing that would ensure or increase the probability that an embryo will be of a particular sex, or that would identify the sex of an in vitro embryo, except to prevent, diagnose or treat a sex-linked disorder or disease.

198 Id.

200 Id.

201 Id. (citing Assisted Reproductive Treatment Act 2008, No. 76 of 2008, § 28 (Victoria)).

202 Id. (citing Reproductive Technology Council, Approval for Diagnostic Testing of Embryos (2004) (WA)).

203 Id. (citing Reproductive Technology (Clinical Practices) Act 1988, § 13, (SA)).

204 Birdsall, supra note 124, at 225 (citing Assisted Reproductive Treatment Act 2008 (Vic.) c. 28 (Austl.)).

206 Id. (citing Assisted Human Reproduction Act, S.C. 2004 ch. 2, s. 5(e)).
In the United States, four states have passed legislation regarding sex selection. Arizona, Pennsylvania, Illinois, and Oklahoma all have statutes in place with language specifically prohibiting abortion based on sex selection.

Arizona’s statute is the most specific and comprehensive in addressing the issue, requiring that an affidavit be submitted prior to the performance of an abortion, stating that “the person making the affidavit is not aborting the child because of the child’s sex or race and has no knowledge that the child to be aborted is being aborted because of the child’s sex or race.” Arizona makes it a crime for a physician to perform an abortion with the knowledge that the abortion is sought because of the fetus’s sex or race.

Pennsylvania’s statute allows a physician to use his or her medical judgment to determine the reasons for the abortion. An abortion may be performed only after the physician certifies that “in his best clinical judgment, the abortion is necessary” or after receiving a written statement from a referring physician certifying the same. The law explicitly states that “[n]o abortion which is sought solely because of the sex of the unborn child shall be deemed a necessary abortion.” Violation of the statute is considered both criminal as well as a possible cause for suspension or loss of medical license.

The relevant Illinois statute states that “[n]o person shall intentionally perform an abortion with knowledge that the pregnant woman is seeking the abortion solely on account of the sex of the fetus.” The statute goes on to note that none of the language “shall be construed to proscribe the performance of an abortion on account of the sex of the fetus because of a genetic disorder linked to that sex.” Violation of the statute constitutes a criminal offense.

The Oklahoma statute maintains almost identical language to the Illinois statute, but allows for damages against the violating party.

1. Proposed State Legislation

In addition, seven states have proposed bills regarding the prohibition of sex-selective abortion. Florida, Massachusetts, Missouri, New Jersey, New York, Ohio, and Rhode Island all have some version of proposed legislation concerning requirements of the physician, application to abortions because of genetic disorders, and the penalties imposed (criminal or civil).
In Florida, the Susan B. Anthony and Frederick Douglass Prenatal Nondiscrimination and Equal Opportunity for Life Act proposes amending the Florida abortion statute to read that

A person may not knowingly perform a termination of pregnancy before that person completes and signs an affidavit stating that he or she is not performing the termination of pregnancy because of the child’s sex or race and has no knowledge that the pregnancy is being terminated because of the child’s sex or race.\(^{220}\)

The proposed legislation provides for criminal penalties, enjoining of the physician from performing an abortion, and the payment of civil fines.\(^{221}\)

In Missouri, the Abortion Ban for Sex Selection and Genetic Abnormalities Act of 2012 proposes language that “[n]o person shall intentionally perform or attempt to perform an abortion with the knowledge that the pregnant woman is seeking the abortion solely on account of the sex of the unborn child.”\(^{222}\) Although this bill does not require the signed affidavit as the proposed Florida legislation does, the Missouri bill would impose similar criminal and civil penalties for performing sex-selective abortions.\(^{223}\) The bill is also distinguishable from other similar proposals in that it would additionally ban abortions based on diagnosed genetic disorders.\(^{224}\)

The proposed New Jersey Assembly Bill No. 2157 would impose similar penalties, criminal and civil, to the Florida and Missouri bills, for anyone “who knowingly . . . performs a sex-selection or race-selection abortion.”\(^{225}\) The New York and Rhode Island bills are slightly less expansive but mirror very closely the current Illinois and Oklahoma language prohibiting sex-selective abortion but not abortion because of genetic disorders.\(^{226}\) The New York proposed legislation would only specifically create a civil cause of action for punitive damages against anyone performing an abortion in violation of the statute regardless of any consent given.\(^{227}\) Rhode Island follows the same general formula in its proposal, both in prohibiting sex-selective abortion as well as in penalties.\(^{228}\) The proposed Massachusetts legislation is also not as expansive as other states, simply inserting language prohibiting sex selection without stating any specific additional penalties.\(^{229}\) Ohio similarly has legislation proposed.

\(^{220}\) S. 1702, 2011 Leg., 114th Sess. §§ 1, 3 (Fla. 2012).

\(^{221}\) Id. § 3.

\(^{223}\) Id. §§ 188.290, 293.

\(^{224}\) Id. §§ 188.284, .287.

No person shall knowingly or recklessly perform or attempt to perform an abortion with knowledge that the pregnant female is seeking the abortion solely on account of the sex of the unborn child. Nothing in this section shall be construed to proscribe the performance of an abortion because the unborn child has a genetic disorder that is sex-linked.

under which “[n]o person shall purposely . . . perform or induce or attempt to perform or induce an abortion . . . because of the sex or gender of the unborn child,”230 and authorizes a civil action against anyone performing a sex-selective abortion.231

Though these proposals vary, each directly addresses and prohibits the specific practice of sex-selective abortion, focuses on the abortion provider, and limits the liability and penalties on the woman herself for having the abortion.

2. Proposed Federal Legislation

A significant piece of legislation, the Prenatal Nondiscrimination Act (“PRENDA”), a federal bill prohibiting sex-selective abortion, was considered in the United States House of Representatives in December 2011.232 PRENDA proposed to fine or imprison anyone who “perform[ed] an abortion knowing that such abortion is sought based on the sex, gender, color or race of the child.”233 PRENDA also created civil remedies against the provider, such as damages for injuries, punitive damages, and injunctive relief to prevent the abortion provider from performing any further abortions.234 On May 31, 2012, PRENDA failed to receive the two-thirds vote required to pass, with a final vote of 246–168.235 Although PRENDA did not pass, it was important as the first comprehensive proposed federal sex-selection legislation in the United States.236 What is interesting is that much of the language in the Findings and Constitutional Authority section of PRENDA referenced sex selection as an international problem.237 Congress clearly took into account the policies and cultural practices of foreign countries when creating the findings for this Act.

231 Id. § 2919.20(C).
232 H.R. 3541, 112th Cong. (2011). The Act was given the Short Title (to be cited as) “Susan B. Anthony and Frederick Douglass Prenatal Nondiscrimination Act of 2011.” Id. § 1.
233 Id. §§ 250(a)(1), (4).
234 Id. §§ 250(b)(3)(A)–(B), (4)(A). Such actions could be brought by the woman who had the abortion and her relatives. Id. §§ 250(b)(1)–(2).
235 H.R. 3541 (112th): Prenatal Nondiscrimination Act (PRENDA) of 2012, Govtrack.us, http://www.govtrack.us/congress/votes/112-2012/h299 (last visited May 11, 2013) [hereinafter Prenatal Nondiscrimination Act (PRENDA) of 2012]. “This vote was taken under a procedure called ‘suspension of the rules’ which is typically used to pass non-controversial bills. Votes under suspension require a 2/3rds majority. A failed vote under suspension can be taken again.” Id.
237 See generally id. § 2. For example, PRENDA noted that “[s]ex preference is reinforced by the low value associated, by some segments of the world community, with female offspring.” Id. § 2(a)(1)(E). PRENDA noted that “[c]ountries with longstanding experience with sex-selection abortion—such as the Republic of India, the United Kingdom, and the People’s Republic of China—have enacted restrictions on sex-selection.” Id. § 2(a)(1)(J). PRENDA stated that “[w]hile sex-selection abortions are more common outside the United States, the evidence reveals that female feticide is also occurring in the United States.” Id. § 2(a)(1)(F). PRENDA noted that “the United States Congress has expressed repeatedly . . . strong condemnation of policies promoting sex-selection abortion in the ‘Communist Government of China.’ ” Id. § 2(a)(1)(H).
The worldwide community and foreign policies on this topic are referenced throughout the findings sections. In fact, almost half of the findings referenced the worldwide community, other countries’ policies, or the cultural practices of foreign countries. The bill noted the statistic that “more than 100 million women [are] ‘demographically missing’ from the world.” PRENDA also referenced the United Nations Commission on the Status of Women and noted that the Commission “has urged governments of all nations ‘to take necessary measures to prevent . . . prenatal sex selection.’ ” The bill also asserted that without this legislation, the United States was becoming a sort of “abortion tourism” locale. According to the sponsors of PRENDA, “citizens of other countries come to the United States for sex-selection procedures that would be criminal in their country of origin.” The sponsors of PRENDA seemed concerned that, similar to the reproductive tourism trend, “the sex-selection industry is . . . a growing trend in the United States.” PRENDA stated that there is “evidence of sex selection, most likely at the prenatal stage” in the United States.

Although the sponsors of PRENDA ostensibly seemed concerned that the majority of “sex-selection abortions performed in the United States and worldwide are overwhelmingly female,” the bill was proposed and endorsed only by pro-life politicians and groups. Arizona Representative Trent Franks, who

238 Id. § 2(a)(1)(E), (H)–(J).
239 See id. § 2.
240 Id. § 2(a)(1)(I). PRENDA also notes that “[e]xperts worldwide document that a significant sex-ratio imbalance in which males numerically predominate can be a cause of increased violence and militancy within a society.” Id. § 2(a)(1)(L).
241 Id. § 2(a)(1)(H).
242 Id. § 2(a)(1)(J). PRENDA stated that “[b]ecause the United States permits abortion on the basis of sex, the United States may effectively function as a ‘safe haven’ for those who seek to have American physicians do what would otherwise be criminal in their home countries” Id.
243 Id. PRENDA also suggested “some Americans are exercising sex-selection abortion practices within the United States consistent with discriminatory practices common to their country of origin, or the country to which they trace their ancestry.” Id. § 2(a)(1)(F). This appears to reference the study regarding Chinese-American, Indian-American and Korean-American populations discussed earlier.

245 H.R. 3541 § 2(a)(1)(C).
246 Id. § 2(a)(1)(F) (internal quotation marks omitted).
247 Id. § 2(a)(1)(E).
Prenatal Sex Selection

Spring 2013]

PRENATAL SEX SELECTION 713

has vowed to advocate the “sanctity of life” during his term,249 sponsored PRENDA in the House.250 Franks has “made it one of [his] priorities . . . to fight for the end of abortion on demand.”251 Americans United for Life (AUL) has also been a vocal supporter of PRENDA, urging the public and Congress to support the legislation and “stop a real war on women—sex selection abortions.”252

The PRENDA legislation itself references opinions made by the American College of Obstetricians and Gynecologists (“ACOG”) as well as the American Society for Reproductive Medicine (“ASRM”) in support for its finding that the American medical community opposes sex-selection abortion.253 Cited in PRENDA is an ACOG Ethics Committee Opinion stating “sex-selection is inappropriate for family planning purposes because sex-selection ‘ultimately supports sexist practices.’”254 In that same Committee Opinion, the ACOG states “[t]he committee accepts, as ethically permissible, the practice of sex selection to prevent sex-linked genetic disorders.”255 The ACOG recognizes the fact that “it might be difficult for health care providers to avoid the possibility of unwittingly participating in sex selection” (for nonmedical purposes).256

Also noted in PRENDA is the ASRM opinion that states, similar to the ACOG opinion, “sex-selection for family planning purposes is ethically problematic, inappropriate, and should be discouraged.”257 The ASRM opinions written on sex selection are not in reference specifically to sex-selective abortion, but rather sex selection and preimplantation or preconception gender selection.258 One such opinion, from 1999, stated that “[i]n 1994, the Ethics Committee of the American Society of Reproductive Medicine concluded, although not unanimously, that whereas preimplantation sex selection is appro-

250 H.R. 3541; see also PRENATAL NONDISCRIMINATION ACT (PRENDA) OF 2012, supra note 235.
251 Franks, supra note 249. Franks “will not stand by and watch thousands of innocent babies slaughtered everyday simply because they are not wanted” Id.
254 Id.
257 H.R. 3541 § 2(a)(1)(K).
appropriate to avoid the birth of children with genetic disorders, it is not acceptable when used solely for nonmedical reasons.”259 It goes on to say, “[s]ince 1994, the further development of less burdensome and invasive medical technologies for sex selection suggests a need to revisit the complex ethical questions involved.”260 As noted in PRENDA, this opinion does say that “to encourage PGD for sex selection when it is not medically indicated presents ethical problems.”261

However, the ASRM’s 2001 opinion says that “[u]ntil a more clearly persuasive ethical argument emerges, or there is stronger empirical evidence that most choices to select the gender of offspring would be harmful, policies to prohibit or condemn as unethical all uses of nonmedically indicated preconception gender selection are not justified.”262 It even goes on to state: “[n]or would it be unethical for parents to use or for physicians to provide safe and effective means of preconception gender selection to have a child of the gender opposite to that of an existing child or children.”263

PRENDA’s conclusion that “[t]he American medical community opposes sex-selection abortion”264 seems a bit tenuous based on the full context and background of the ACOG and ASRM opinions that it uses. If these organizations’ opinions more conclusively stated that they opposed sex-selective abortion, and if these groups in fact supported the bill itself, then the general claims of protection of women and a feminist ideal within the bill would be better supported.

Also noted in PRENDA is the repeated condemnation of sex-selection abortion by the United States Ambassador to the Commission on the Status of Women.265 This Commission has in fact been vocal about its opposition to prenatal sex-selection based on its concern for the right of the girl child and discrimination against the girl child.266

IV. BIOETHICAL ANALYSIS

This part examines the ethical issues that arise from both sex selection and efforts to limit technology as a means of curbing sex-selective abortion. This analysis takes into account the recent literature on this issue, including recent guidance from the United Nations interagency statement on sex selection, Preventing Gender-Biased Sex Selection.267 It also draws on the disability literature about abortion based on genetic imperfections to draw a parallel between

259 Ethics Committee, Sex Selection, supra note 136, at 595.
260 Id.
261 Id. at 597.
262 Ethics Committee, Preconception, supra note 258, at 863.
263 Id.
265 Id. § 2(a)(1)(J).
267 WORLD HEALTH ORG., supra note 16. The United Nations agencies OHCHR, UNFPA, UNICEF, UN Women and WHO issued the report together. Id. at vi.
using technology to identify disability-selective abortion and sex-selective abortion. This part also questions whether autonomy and justice can be balanced when figuring out a government’s policies and laws about sex-selective abortion and gender-identification technology.

A. Female Gender as Disability?

To analyze the ethics of allowing sex-selective abortion in a society, it is instructive to examine the disability literature about abortion based on disability. Disability-selective abortion occurs when one terminates a pregnancy because the fetus is diagnosed with a non-fatal disability, such as Down syndrome. Just as many believe that sex-selective abortion harms women, scholars worry that disability-selective abortion harms the disabled. Seeking an abortion because the fetus is found to have a genetic disability is based on prejudice against the disabled community and ignorance of the disabilities themselves. Some argue that allowing discriminatory abortion of any kind—based on gender or disability—harms the disabled community by singling them out as “abortable” and conveying to them the idea that their government promotes aborting people like them. This transmits the message that living with a disability is a “problem” that the government is intending to “fix” by allowing women to abort babies with disabilities and, in a sense, “save them” from a life of impairment.

A parallel argument could be made with regards to sex-selective abortion. Perhaps by not restricting sex-selective abortion, societies, especially those with a skewed sex ratio, are implicitly agreeing that aborting female fetuses is a valid practice. Unfortunately, though, restricting sex-selective abortion or

269 Id. at 111–12.
270 Id. at 115.
271 Id. at 115–16.
272 Id. at 111–12, 116–18.
273 Some have also argued that by prohibiting the use of PGD for sex-selective abortions while allowing PGD for disability-selective abortions, societies are discriminating against the living disabled community and sending an insulting message. See, e.g., Anna McConachy, “You Shouldn’t Have Been Born”: Does the Regulation of Preimplantation Genetic Diagnosis Send a Discriminatory Message to the Disabled Community?, Otago Y.B. Legal Res. 1, 38 (2010), http://www.otago.ac.nz/law/research/journals/otago036311.pdf. McConachy argues that drawing a line between different types of disabilities “increases the likelihood that an explicitly devaluing message will be sent about people whose conditions are listed as ‘serious enough to avoid.’ ” Id. (quoting Erik Parens & Adrienne Asch, The Disability Rights Critique of Prenatal Genetic Testing: Reflections and Recommendations, in Prenatal Testing and Disability Rights 3, 15 (Erik Parens & Adrienne Asch eds., 2000)). This line-drawing puts some disabled people “on the right side of the tracks and others on the wrong.” Id. at 39 (quoting Erik Parens & Adrienne Asch, Disability Rights Critique of Prenatal Genetic Testing: Reflections and Recommendations, 9 Mental Retardation & Developmental Disabilities Res. Revs. 40, 45 n.86 (2003)). The effect is that “society is simultaneously sending two messages to the disabled and their families. The first message says, ‘Since you’re here, we’re going to care for you as best we can,’ but the second says, ‘But everyone would be better off if you were not here at all.’ ” Id. (quoting Hans S. Reinders, The Future of the Disabled in a Liberal Society: An Ethical Analysis (2000)). A similar argument could be made about allowing sex-selective abortion.
gender-identification technology, without at the same time lifting the position of women and girls in that society, does not help. In fact, as discussed above, often wealthier and upper class women are the ones able to afford to skirt these regulations and, therefore, are more likely to have males. In such a case, the economic burden of having a girl is heightened, with access to underground sex selection available only to those who can afford it (whether by finding a willing provider for a fee or being able to travel out of the country to seek such services).

Some bioethicists have stated that knowingly bringing a child into the world with a disability is “unfair” to the child because it deprives them of a “right to an open future.” Some feel it is “irresponsible” to bring to life a child with a known disability. However, many of the limitations set on disability are socially imposed, not biologically imposed. There is a large gap in “education, employment, income, and social participation between people with disabilities” and people who are not disabled. Similarly, girls and women in societies with a skewed sex ratio suffer from the same gap. More needs to be done to address this gap and get to the heart of the son preference issue. The limitations on technology and abortion cannot be effective in a vacuum. This education, employment, income, and social participation gap must be filled. If they were, restrictions against sex-selective abortion and prenatal gender identification technology would be unnecessary because there would be no reason to prefer sons instead of daughters.

B. Autonomy, Justice, and Effectiveness

When analyzing legislative efforts in different countries to restrict sex-selective abortion or access to gender identification technology, it is important to examine whether such efforts are effective. In 2011, the United Nations issued an interagency statement Preventing Gender-Biased Sex Selection (UN Statement) that attempted to address this issue. The UN Statement discussed the international public health and human rights issues that arise from sex selection, but also focused on whether legislation to limit sex-selective technology would be unnecessary because there would be no reason to prefer sons instead of daughters.

Perhaps countries that have not regulated this practice are sending a message that families would be better off without girls. The problem with this argument is that banning sex-selective abortion does not raise the status of girls and women at all. Rather, policies that help bolster women’s education and earning potential and women-friendly legal and inheritance policies have a much better likelihood to be effective. Countries such as India and China have had restrictions against sex-selective abortion for decades now, yet the skewed sex ratio continues.

275 Id.
276 Id. at 1653. See also Lynn Gillam, Prenatal Diagnosis and Discrimination Against the Disabled, 25 J. MED. ETHICS 163, 170 (1999) (“Discrimination against people with disabilities is neither an inevitable result of prenatal diagnosis, nor is it a necessary conceptual part of it.”). However, Gillam does acknowledge the potential for negative effects on the disabled community with the increase in prenatal diagnosis in the abortion movement. These negative effects, while not inevitable or even likely, must be recognized and countered to avoid “slippery slope” discrimination. Id.
277 Asch, supra note 274, at 1653.
278 WORLD HEALTH ORG., supra note 16, at vi.
ogy or abortion helped the root causes of the problem—male preference. The UN Statement suggested that such legislation has not helped curb the desire to have sons. Furthermore, some women and their families have ignored such legislation. These families continue to value sons over daughters because of social and economic realities. Imbalances in sex ratios have reflected a societal, cultural, political, and economic preference for male children. Although technological advances have compounded the problem, they are not the cause of the skewed sex ratios. The crux of the problem is rooted in discrimination against women through marriage systems, family formation, and property inheritance laws in certain parts of the world.

The UN Statement described the pernicious effects of son preference in women’s lives. There is huge pressure placed upon women in countries like India and China to produce sons. This can have “debilitating effects on the mental and physical health of women.” Due to this pressure, women try to discover the sex of a fetus despite legislation forbidding it in countries like India and China. These women may be forced or coerced by their family or the community to abort a female fetus. It does not appear that laws restricting sex-selective abortion or abortion in general protect these women. Instead, such legislation sometimes forces some women to have unsafe, unregulated, illegal, and often high-risk abortions. This not only puts women’s health at risk but also perpetuates son preference.

The global efforts to limit sex selection through restricting access to gender identification technology and abortion limit the autonomy of women to make decisions about their bodies. In some of these cultures, it is unclear whether women exercise any material degree of individual autonomy. Some have argued that there is no autonomy problem with banning sex-selective abortion because the choice to have a sex-selective abortion of a female fetus is “based on patterns of male preference and female subordination.” Further, there is no “right to choose” in sex-selective abortions because such choices do not promote liberty. Scholars argue that the only way to promote liberty is to choose justice, which they argue means restricting such abortions.

279 Id. at v–vi.
280 Id. at v.
281 See id.
282 Id.
283 Id. at 1.
284 Id.
285 Id.
286 Id. at 5.
287 See id.
288 Id.
289 Id.
290 Id.
291 Id.
292 Id.
293 Id.
294 Cherry, supra note 58, at 219.
295 Id. at 223.
296 See, e.g., id.
Even limiting women’s choice to adhere to socially acceptable norms, however harmful, may have serious consequences. A real problem is that if a woman is forced to carry a female fetus to term—whether by forbidding abortions or gender identification technology—consequences of violence, abandonment, divorce, or death (created by the culture of gender discrimination arising from son preference) may result.297

Measures enacted to protect against female gendercide have an unfortunate tendency to be overbroad; therefore, women who want to have an abortion for purposes that are not related to sex-selection are unable to do so, even when they may have a valid medical purpose.298 Legal prohibitions against abortion, however well intentioned, end up putting poor and less educated women’s health in danger.299 With the reduced accessibility of legal and safe abortions through legislation, women continue to look elsewhere for such procedures.300 The legislation in itself does not curb son preference; rather it often results in unsafe procedures that hurt instead of protect women.301 The fact that the legislation hurts less-advantaged women more is a justice problem not currently addressed by the global responses to this issue. In fact, it may exacerbate the disparity. If richer women are able to skirt legislation and get access to technology and abortion services that results in them having boys over girls, in cultures where boys are more valued, this enhances the divide among classes of women. Restricting access to technology and abortion without addressing the reasons that male preference exists in the first place is counterproductive.

The UN Statement discussed the need for supportive measures for girls and women, instead of restrictions on abortion, as an answer to the skewed sex ratios.302 Women and girls need access to information, health care services, and nutrition; education; and personal security to combat and prevent gender-biased sex selection.303 The UN Statement did advocate legislation and policy, but not measures that would restrict access to gender identification or abortion.304 Rather, the UN Statement advocated legal and socioeconomic policies that would maintain gender equality and address the causes of son preference.305 The purpose of such policies would be to advocate for a change in attitudes towards females and to balance gender inequalities.306 Unfortunately, this is very difficult to do. Politically, it may be more expedient to ban access to technology because it is a quick and obvious fix. However, in order to prevent the discrimination of girls and women, truly effective measures would not be as immediate. There needs to be access to comprehensive and equal education for girls and women.307 Women also need more employment opportunities so that

297 WORLD HEALTH ORG., supra note 16, at 5.
298 Id. at 6.
299 Id.
300 Id.
301 Id. at 5.
302 Id. at 10.
303 Id.
304 Id.
305 Id.
306 Id.
307 See id.
they are not seen as a burden.308 Education and economic empowerment would help women gain autonomy in societies.309

Additionally, inheritance laws must be changed to favor gender-neutral policies.310 It is essential that daughters are able to inherit family property.311 The UN Statement approved of laws requiring both sons and daughters to be responsible for the care of parents in proportion to the share of property to be inherited.312 Additionally, it approved of measures providing direct subsidies to parents of girls at the time of birth, scholarship programs for girls, increased gender-based school quotas, and financial incentives aimed at improving women’s economic situation.313

The UN Statement acknowledged the reality that:

The prevention of gender-biased sex selection will require major commitment and sustained and concerted efforts by governments, civil society, international agencies and all others working towards the goal of gender equality. A carefully planned and systematic approach involving stakeholders at all levels is needed to put in place supportive legal and policy measures for girls and women. This must be combined with the use of non-judgmental and non-coercive mass-media strategies and other social measures to encourage [behavior] change. Imbalanced sex ratios are an unacceptable manifestation of gender discrimination against girls and women and a violation of their human rights.314

Some scholars have argued that regulating sex-selection techniques can prevent discrimination against females315 and advocate for an overall ban on preconception sex selection.316 Others advocate for a tempered approach, such as wait-listing families seeking sex-selection technology.317 These scholars believe that allowing sex selection has a detrimental effect on women.318

308 See id. at 8.
309 Id.
310 Id. at 10.
311 See id. at vi, 10.
312 Id. at 7.
313 Id. The interagency statement makes it clear that “essential element[s] in efforts to reduce sex-ratio imbalances [include] advocacy, sensitization and awareness-raising programmes conducted by both governments and nongovernmental organizations.” Id. The statement goes on to suggest that:

Experience also indicates that broad, integrated and systematic approaches need to be taken if efforts to eliminate son preference are to succeed. Such approaches should involve not only governmental actors but also nongovernmental organizations and other opinion-makers and advocates to ensure that the social norms and structural issues underlying gender discrimination are addressed. Within this framework, legal action is an important and necessary element but is not sufficient on its own. More research is needed to determine which mix of policies and interventions work best in which context and why.

314 Id. at 8–9 (internal reference omitted).
315 See, e.g., Rachel E. Remaley, Note, “The Original Sexist Sin”: Regulating Preconception Sex Selection Technology, 10 HEALTH MATRIX: J. L.-MED. 249, 254 (2000). Remaley argues that in the United States, substantive due process and procreative liberty is not an absolute right and preconception sex selection does not fall under the umbrella of substantive due process protection. Id.
316 Id. at 290.
318 Id. at 263.
argue that society should strive to create parents who value their children for who they are rather than what they want, and that women should value themselves as women enough to want to create female offspring.319 Some believe that the gender equality goal in our society has been insulted by the existence of sex selection.320 However insulting it may be, unfortunately, it is a reality. Banning access to abortion services and gender identification technology unfortunately adds injury to this insult. Allowing some of the newer technology, such as PGD and MicroSort, may actually reduce the number of sex-selective abortions because families will be choosing the gender they want. Additionally, the UN Statement’s approach of long-range policies that raise women’s status may have the potential to prevent the preference for sons over daughters, which seems to be the ultimate goal of many countries’ laws regulating sex-selective abortion. In the United States, PRENDA and the sex-selective state laws seem more concerned with weakening a general right to choose rather than a sincere commitment to gender equality. In contrast, countries in Asia and Europe aim to curb son preference by restricting access to gender identification technology and abortion services. Unfortunately, such efforts have been ineffective.

South Korea may serve as an example of a society that has begun to successfully address the issue of son preference.321 To help reduce the practice of sex selection, South Korea focused on increasing female education.322 Additionally, the court system in South Korea supported equal rights in areas of inheritance and anti-discrimination lawsuits.323 Finally, court rulings and public education about son preference have led some to believe that son preference is “old-fashioned and unnecessary.”324 Countries like China and India should follow in the footsteps of South Korea by focusing on education and legal equality of men and women. Additionally, some have suggested that China must terminate its “one-child policy” as it is no longer needed to reduce the population.325 In all societies, raising the economic value of girls by enacting laws and supporting female education326 would help much more than the global legislative efforts that curb access to technology and abortion services. It is no doubt easier to use legal methods to ban gender identification or selection technology than to use the law to achieve the more important and effective long-term goal of curbing son preference. However, the use of legal methods to restrict access to such technology has been ineffective.

CONCLUSION

This Article has described the problem of sex selection in various countries and the new technologies that aid such practices. The purpose of this Article was to demonstrate how different countries are addressing the issue of sex

319 Id.
320 Id.
321 Gendercide, supra note 1.
322 Id.
323 See id.
324 Id.
325 E.g., id.
326 Id.
selection and to examine such efforts from a bioethical viewpoint. Unfortunately, the global efforts to restrict sex-selective abortion and gender identification technology do not appear to be working. Son preference still exists in many parts of the world. The UN Statement suggested practical common sense solutions, such as increasing educational opportunities for girls. Unfortunately, effecting such policies is much more difficult than so-called legislative “fixes.”

There is surprisingly little scholarly legal literature about sex-selective abortion. This Article is a first step to describe the problem and legal efforts to address the problem, but more scholars need to focus on this area. Large-scale, public health law research examining the demographics in different countries correlated with restrictions on sex-selective and gender identification technologies would be very helpful in being able to create public health policy that would help curb son preference. Additionally, population-based studies examining success stories, such as South Korea, could shed light on which policies work and how to effect these policies. Until son preference is combated, the legislative efforts to stop sex selection will not be effective and may end up hurting females rather than helping them.